The refined transfer, bundle structures, and algebraicK-theory
نویسندگان
چکیده
منابع مشابه
5 J ul 2 00 7 THE REFINED TRANSFER , BUNDLE STRUCTURES AND ALGEBRAIC K - THEORY
We give new homotopy theoretic criteria for deciding when a fibration with homotopy finite fibers admits a reduction to a fiber bundle with compact topological manifold fibers. The criteria lead to an unexpected result about homeomorphism groups of manifolds. A tool used in the proof is a surjective splitting of the assembly map for Waldhausen’s functor A(X). We also give concrete examples of f...
متن کامل0 70 7 . 02 50 v 4 [ m at h . A T ] 1 8 D ec 2 00 8 THE REFINED TRANSFER , BUNDLE STRUCTURES AND ALGEBRAIC K - THEORY
We give new homotopy theoretic criteria for deciding when a fibration with homotopy finite fibers admits a reduction to a fiber bundle with compact topological manifold fibers. The criteria lead to an unexpected result about homeomorphism groups of manifolds. A tool used in the proof is a surjective splitting of the assembly map for Waldhausen’s functor A(X). We also give concrete examples of f...
متن کاملthe analysis of the role of the speech acts theory in translating and dubbing hollywood films
از محوری ترین اثراتی که یک فیلم سینمایی ایجاد می کند دیالوگ هایی است که هنرپیش گان فیلم میگویند. به زعم یک فیلم ساز, یک شیوه متأثر نمودن مخاطب از اثر منظوره نیروی گفتارهای گوینده, مثل نیروی عاطفی, ترس آور, غم انگیز, هیجان انگیز و غیره, است. این مطالعه به بررسی این مسأله مبادرت کرده است که آیا نیروی فراگفتاری هنرپیش گان به مثابه ی اعمال گفتاری در پنج فیلم هالیوودی در نسخه های دوبله شده باز تولید...
15 صفحه اولBundle Event Structures and CCSP
We investigate which event structures can be denoted by means of closed CCS CSP expressions. Working up to isomorphism we find that all denotable event structures are bundle event structures, upon adding an infinitary parallel composition all bundle event structures are denotable, without it every finite bundle event structure can be denoted, as well as every countable prime event structure wit...
متن کاملAlmost Complex Structures on the Cotangent Bundle
We construct some lift of an almost complex structure to the cotangent bundle, using a connection on the base manifold. This unifies the complete lift defined by I.Satô and the horizontal lift introduced by S.Ishihara and K.Yano. We study some geometric properties of this lift and its compatibility with symplectic forms on the cotangent bundle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Topology
سال: 2009
ISSN: 1753-8416
DOI: 10.1112/jtopol/jtp010